AI-based Audio Analysis of Music and Soundscapes

Audio Processing

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Audio Processing Outline

Part 1

- Sound, Sound Waves
- Waveform, Sampling
- Sound Level, Intensity, Loudness
- Time-Frequency Decomposition
- Auditory Scene

Programming Session 1

Audio Processing Outline

Part 2

- Mel Spectrogram
- Periodic Signals, Pitch, Frequency Modulation

Jupyter

- Transients
- Noise
- Temporal Envelope
- Timbre, Mel-Frequency Cepstral Coefficients (MFCC)

Fig. 2.1

- Constant-Q Transform
- Chroma Features

Programming Session 2

Audio Processing Sound

- Mechanical vibration with contact to air
- Rapid modulation of airflow

Audio Processing Sound Waves

Audio Processing Sound Waves

- Oscillation of air pressure
- Propagate through medium (air)
- Converted into physical motion by ear / microphone

Audio Processing Waveform

• Waveform x(t)

Amplitude (vertical displacement) of pressure vs. time

Converting (continuous-time) analog signals into (discretetime) digital signal

Converting (continuous-time) analog signals into (discretetime) digital signal

Converting (continuous-time) analog signals into (discretetime) digital signal

Sampling frequency f_s: Number of samples per seconds [Hz]

• (Nyquist-Shannon) sampling theorem: $f_{\text{max}} < f_{\text{s}}/2$

- Signal must be band-limited
- If sampling rate is too slow, aliasing occurs (higher frequencies can not be reconstructed properly

Audio Processing Sound Level

Sound level [dB]

 $\blacksquare L_{\rm dB} = 20 \log_{10} x_{\rm RMS}$

Root mean square
$$x_{\rm RMS} = \sqrt{\frac{1}{N} \sum_i x_i^2}$$

Audio Processing Sound Level

Sound level [dB]

 $\blacksquare L_{\rm dB} = 20 \log_{10} x_{\rm RMS}$

Root mean square
$$x_{\text{RMS}} = \sqrt{\frac{1}{N} \sum_{i} x_i^2}$$

Dynamics

Volume of a sound

Sound power

Energy per time emitted by sound source (in all directions)

Dynamics

Volume of a sound

Sound power

Energy per time emitted by sound source (in all directions)

Sound intensity

Sound power per unit area

Minimum perceivable sound intensity = threshold of hearing

 $I_{TOH} = 10^{-12} W/m^2$

Dynamics

Volume of a sound

Sound power

Energy per time emitted by sound source (in all directions)

- Sound intensity
 - Sound power per unit area

Minimum perceivable sound intensity = threshold of hearing

 $I_{TOH} = 10^{-12} W/m^2$

Intensity is computed using reference (TOH)

$$\blacksquare I[dB] = 10 \cdot log_{10} \left(\frac{I}{I_{\text{TOH}}}\right)$$

Examples

Source	Intensity	Intensity level	× TOH
Threshold of hearing (TOH)	10 ⁻¹²	0 dB	1
Whisper	10 ⁻¹⁰	20 dB	10 ²
Pianissimo	10 ⁻⁸	40 dB	10 ⁴
Normal conversation	10 ⁻⁶	60 dB	10 ⁶
Fortissimo	10 ⁻²	100 dB	10 ¹⁰
Threshold of pain	10	130 dB	10 ¹³
Jet take-off	10 ²	140 dB	10 ¹⁴
Instant perforation of eardrum	10 ⁴	160 dB	10 ¹⁶

Table 1.1 from [Müller, FMP, Springer 2015]

Fig. 1.1

Audio Processing Loudness

- Perceptual property (sort sounds from quiet to loud)
- Correlates with sound intensity
- Subjective, further depends on sound duration & frequency

Audio Processing Loudness

- Perceptual property (sort sounds from quiet to loud)
- Correlates with sound intensity
- Subjective, further depends on sound duration & frequency

- Fourier Transform
 - Decompose signal into sum of sinusoids
 - Amplitude, frequency, phase

Fourier Transform

Decompose signal into sum of sinusoids

Amplitude, frequency, phase

Fourier Transform

Amplitude, frequency, phase

- Short-Time Fourier Transform (STFT)
 - Moving analysis window

- Short-Time Fourier Transform (STFT)
 - Moving analysis window
 - Time-frequency energy distribution in audio signal

- Short-Time Fourier Transform (STFT)
 - Moving analysis window
 - Time-frequency energy distribution in audio signal

- Short-Time Fourier Transform (STFT)
 - Moving analysis window
 - Time-frequency energy distribution in audio signal

Distributed sound producing events (sound sources)

- Distributed sound producing events (sound sources)
- Sound propagation through space

- Distributed sound producing events (sound sources)
- Sound propagation through space
- Perceived (ear) or recorded (microphone)

- Distributed sound producing events (sound sources)
- Sound propagation through space
- Perceived (ear) or recorded (microphone)
- Room acoustics
 - Reflection (surfaces)
 - Diffraction (objects)

Audio Processing Mel Frequency Scale

Logarithmic frequency mapping (human pitch perception)

$$I[mel] = 2595 \cdot \log_{10} \left(1 + \frac{f[Hz]}{700} \right)$$

Audio Processing Mel Frequency Scale

Logarithmic frequency mapping (human pitch perception)

■
$$f[\text{mel}] = 2595 \cdot \log_{10} \left(1 + \frac{f[\text{Hz}]}{700} \right)$$

Audio Processing Mel Spectrogram

Mapping from STFT magnitude spectrogram to Mel spectrogram

Triangular filterbank + Matrix multiplication

Audio Processing Mel Spectrogram

Mapping from STFT magnitude spectrogram to Mel spectrogram

Triangular filterbank + Matrix multiplication

Example: 16 mel bands, $f_s = 22.05$ kHz

Audio Processing Mel Spectrogram

- More efficient representation (fewer frequency bands)
- Still captures perceptually relevant information
Audio Processing Mel Spectrogram

More efficient representation (fewer frequency bands)

Still captures perceptually relevant information

Audio Processing Mel Spectrogram

More efficient representation (fewer frequency bands)

Still captures perceptually relevant information

Period T [s] – Duration of an elementary waveform

Period T [s] – Duration of an elementary waveform

Frequency f – Inverse of period ($f = \frac{1}{T}$ [Hz])

- Periodic signals:
 - Sum of pure tones (partials)
 - Fundamental frequency f_0

Periodic signals:

Sum of pure tones (partials)

Fundamental frequency f_0

Harmonics f_k (approx. integer multiples of f_0):

 $\blacksquare f_k \approx (k+1) \cdot f_0$

Periodic signals:

Sum of pure tones (partials)

Fundamental frequency f_0

Harmonics f_k (approx. integer multiples of f_0):

$$\blacksquare f_k \approx (k+1) \cdot f_0$$

Audio Processing Pitch

- Perceptual property (sort sounds from low to high pitch)
- Closely related to frequency

 $f = 440 \cdot 2^{\frac{p-69}{12}} [\text{Hz}]$

Audio Processing Pitch

Perceptual property (sort sounds from low to high pitch)

Closely related to frequency

 $= f = 440 \cdot 2^{\frac{p-69}{12}} [\text{Hz}]$

Audio Processing Pitch Distance (Intervals)

Depend on ratio between pitch frequencies

Examples

Note	Pitch <i>p</i>	Frequency <i>f</i>	
A3	57	220 Hz	Octave intervals
A4	69	440 Hz	$- f(A4) = 2 \cdot f(A3)$
A5	81	880 Hz	$\int f(A5) = 2 \cdot f(A4)$

Audio Processing Pitch Distance (Intervals)

Note: Consonant intervals share partial frequencies

Audio Processing Frequency Modulation

- Techniques
 - Glissando continuous transition between note pitches
 - Vibrato periodic frequency modulation

Spectrogram example (frequency x time)

Audio Processing Frequency Modulation

- Example: Opera singing
 - Estimation & sonification of fundamental frequency contours

Audio Processing Transients

- Sound characteristics
 - High amplitude
 - Short duration
 - Wide-band signal
 - Energy distributed over large frequency range (not just a few frequencies)

Audio Processing Transients (Examples) ++ 10000 0.5 -Frequency (Hz) 7500 String 0.0 -5000 instruments (ir 2500 -Audio 1 -0.5 0 3 2 3 2 0 1 0 1

Audio Processing

Audio Processing

Audio Processing Noise

- Sound characteristics
 - Non-periodic, texture-like
 - Random fluctuations of air pressure

Audio Processing Noise

- Sound characteristics
 - Non-periodic, texture-like
 - Random fluctuations of air pressure
- Examples
 - Consonants (speech)
 - Wind (random aerodynamic turbulences)

Audio Processing Real-life Sound Examples

Music (violin)

Examples:

Male Speech

Audio Processing Real-life Sound Examples

Examples:

Bird singing

Running machine

Audio Processing Temporal Envelope

Smooth curve outlining the signal extreme points

ADSR envelope model (also used for audio synthesis)

<u>Attack</u>, <u>Decay</u>, <u>Sustain</u>, <u>Release</u>

Audio Processing Temporal Envelope

Smooth curve outlining the signal extreme points

ADSR envelope model (also used for audio synthesis)

Fig. 2.7

Audio Processing Temporal Envelope

Tremolo

- Periodic amplitude modulation
- Often coincides with frequency modulation (vibrato)
- Examples: instrument sounds

Audio Processing Timbre

- Perceptual attribute (complements pitch, loudness, duration)
- Difference between musical tones of same pitch & loudness

Audio Processing Timbre

- Perceptual attribute (complements pitch, loudness, duration)
- Difference between musical tones of same pitch & loudness
- Timbre research

(Objective) sound characteristics

- Temporal / spectral envelope
- Tonal / noise-like components
 - Partial (frequency) energies

Compact representation of spectral envelope

Audio signal

Compact representation of spectral envelope

10 MFCC 5

0

- STFT (linearly-spaced frequencies)
- CQT (logarithmically-spaced, closer to human auditory perception)

- STFT (linearly-spaced frequencies)
- CQT (logarithmically-spaced, closer to human auditory perception)
 - Variable number of frequency bins per octave
 - Increasing time resolution towards higher frequencies

- STFT (linearly-spaced frequencies)
- CQT (logarithmically-spaced, closer to human auditory perception)
 - Variable number of frequency bins per octave
 - Increasing time resolution towards higher frequencies

- Suitable for music transcription
 - Partials have a constant frequency pattern
 - Vertically shifted
 - Pitch-independent

Audio Processing Chroma Features

- Human pitch perception is periodic
- 2 pitches one octave apart are perceived as similar
- Pitch = chroma + tone height
 - Chroma: C, C#, D, D#, ..., B (12)
 - Tone height: Octave number

Figure 3.3a from [Müller, FMP, Springer 2015]

Audio Processing Chroma Features

((r

Audio 1

Example

STFT CENS 2000 В-1750 A٠ 1500 Pitch Class Frequency (Hz) 1250 1000 E -750 500 D -250 С 0 2.5 3.0 1.0 2.0 0.5 1.0 3.5 0.5 1.5 2.0 2.5 3.0 3.5 0.0 1.5 0.0 Time (seconds) Time (seconds)

Audio Processing Chroma Features

」 (

Audio 1

Example

STFT CENS 2000 В-1750 A٠ 1500 Pitch Class Frequency (Hz) 1250 1000 E -750 500 D -250 С 0 2.5 3.0 1.0 2.0 0.5 1.0 3.5 0.5 1.5 2.0 2.5 3.0 3.5 0.0 1.5 0.0 Time (seconds) Time (seconds) Octave

AI-based Audio Analysis of Music and Soundscapes

Audio Processing

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Images

Fig. 1: https://www.acs.psu.edu/drussell/Demos/waves-intro/Lwave-Red-2.gif

Fig. 1.1: M. Müller (2015): Fundamentals of Music Processing (FMP), Springer, 2015, Tab. 1.1

Fig. 2: https://www.mathworks.com/help/dsp/ref/stft_output.png

Fig. 2.1: https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/1200px-Jupyter_logo.svg.png

Fig. 2.5: https://pressbooks.pub/app/uploads/sites/140/2022/07/Piano_to_F.jpg

Fig. 2.6: https://www.hfm-weimar.de/popvoices/media/_glossar/BH8.png

Fig. 2.7: M. Müller (2015): Fundamentals of Music Processing (FMP), Springer, 2015, Fig. 1.22b & Fig. 1.23

Fig. 2.8: M. Müller (2015): Fundamentals of Music Processing (FMP), Springer, 2015, Fig. 3.3a

Fig. 3: https://i.makeagif.com/media/9-11-2015/6HmpFN.gif

Fig. 4: https://prezigram-

assets.prezicdn.net/e53764d415cd58a530e5f66144779100cc9bdc843686bbb9ea5f5c273ef1d1784bcc63c4f7584771711 9716f5b62701de16797ec8a51ca9a9247981613460ebc

Audio

[Audio 1] https://freesound.org/people/xserra/sounds/196765/

- [Audio 2] https://freesound.org/people/IliasFlou/sounds/498058/ (~0:00 0:05)
- [Audio 3] https://freesound.org/people/danlucaz/sounds/517860/ (~0:00 0:05)

[Audio 4] https://freesound.org/people/IENBA/sounds/489398/ (~0:00 - 0:07)