Al-based Audio Analysis of Music and Soundscapes

Research Projects

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Outline

- General Comments
- Dataset sources
- Possible Topics

Research Project Timeline

Seminar 4 & 5 **Seminar 3 Topic Selection** Machine Learning & Deep Learning Seminar 6 & 7 **Seminar 8** Project Work Presentation

Research Project Process

- Form group of 2-3 students & select a research topic
 - Research question?
 - Short literature review
 - How to split the workload?
- Dataset(s)?
- Think about
 - Audio feature representation
 - Modeling approach (machine learning)
 - Evaluation strategy (metrics, dataset split)

Research Project Audio Datasets

	MIR	Env. Sounds
https://www.audiocontentanalysis.org/datasets.html	\odot	
https://ismir.net/resources/datasets/	\odot	
https://www.idmt.fraunhofer.de/en/publications/datas ets.html	\odot	\odot
https://zenodo.org	\odot	\odot
https://homepages.tuni.fi/toni.heittola/datasets		\odot
https://towardsdatascience.com/40-open-source- audio-datasets-for-ml-59dc39d48f06	\odot	\odot

Research Project Audio

- Get familiar with the audio material (listen to examples)
- Describe the audio
 - What is audible? (isolated sounds / sound mixtures / notes / melodies ...)
 - Sample rate, #channels
- How was the audio recorded?
 - Studio vs. field recording
- Under which license was the dataset published?

Research Project Annotation

- Describe the available annotations
 - Which classes exist?
 - How are they distributed?
 - (Annotate if necessary)
- How many annotators? Which background?
- Does the dataset provide a pre-defined split into training/test sets?
 - If not, how you could create such a split? (make your research reproducible!)

Research Project Task & Modeling

- Which task do you want to solve using audio processing & machine learning?
 - Classification / regression ...
- What could be a good (quick to implement) baseline algorithm?
- How can you evaluate the performance of your algorithm?

Research Project Baseline System

- Baseline system / Processing pipeline
 - Import audio data
 - Import annotations
 - Normalize data
 - Data split (training set / test set)
 - Audio feature extraction
 - Setup modeling algorithm (classifier)
 - Train classifier
 - Evaluate classifier with test set
 - Error analysis

Research Project Improvements & Documentation

- Improve baseline system
 - Try different feature representations & modeling algorithms
 - Repeat evaluation
- Documentation
 - Short presentation (4-5 slides)
 - Include audio examples & plots
 - (online documentation?)

Research Project Topic #1: Sound Event Classification

- Dataset
 - ESC-50 datasets (https://github.com/karolpiczak/ESC-50)
- Task
- Classify isolated sound recordings (5s) into 50 sound classes
- Aspects to look deeper into
 - Compare different spectrogram representations (STFT, Mel Spectrogram etc.)
 - Data augmentation (https://github.com/iver56/audiomentations)

Research Project Topic #2: Vehicle Type Classification

- Dataset
 - IDMT-TRAFFIC (https://www.idmt.fraunhofer.de/en/publications/datasets/traffic.html)
- Task
- Vehicle type classification (bus, car, motorcycle, truck)
- Movement direction estimation (left > right, right > left)
- Aspects to look deeper into
 - Classify between noisy sound classes
 - How to analyze stereo signals (time-of-arrival differences)

Research Project Topic #3: Bird Activity Detection

- Dataset
 - warblrb10k dataset (https://dcase.community/challenge2018/task-bird-audio-detection) 2,000 smartphone recordings
- Task
- Classify a 10s audio recording for bird activity (active / not active)
- Aspects to look deeper into
 - How to deal with large variety of background sounds?
 - Convolutional Neural Networks to learn spectro-temporal patterns (bird vocalizations)

Research Project Topic #4: Acoustic Scene Classification

- Dataset
 - DCASE-2013-Task1 (https://dcase.community/challenge2013/task-acoustic-scene-classification)
- Task
- Classify the acoustic scene (10 classes) given a 30s binaural audio recording
- Aspects to look deeper into
 - How to summarize long-term characteristics of audio signals?
 - Convolutional Neural Networks

Research Project Topic #5: Music Genre Classification

- Dataset
 - FMA-small (https://github.com/mdeff/fma) 8000 30s tracks, 8 genres
- Task
- Classify the music genre
- Aspects to look deeper into
 - Compare different audio features (rhythm, harmony, timbre)

Research Project Topic #6: Music Instrument Classification

- Dataset
 - MedleyDB (https://medleydb.weebly.com/) 196 multitracks
- Task
- Instrument recognition in multitimbral mixtures or classifying individual stems (one instrument active per stem)
- Aspects to look deeper into
 - How robust is instrument recognition vs. #overlapping instruments?
 - How does instrumentation relate to music genre (also annotated)?
 - Co-occurrence matrix

Research Project Topic #7: Chord Recognition

- Dataset
 - IDMT-SMT-CHORDS (https://www.idmt.fraunhofer.de/en/publications/datasets/chords.html)
- Task
- Estimate chord type (3-voiced / 4-voiced chords) from keyboard instruments / guitars
- Aspects to look deeper into
 - Compare classical approach (template matching on chroma vectors)
 with deep learning based approach (CNN)

Research Project

Topic #8: Record-Your-Own-Soundscapes

- Dataset
 - Soundscape recordings
- Task
- Sound Event Detection
- Annotation using Sonic Visualiser
- Aspects to look deeper into
 - Annotator Agreement
 - Background Noises
 - Temporal long-term structure of audio recordings

Fig. 1

Tools

- Python programming
 - Jupyter notebook (https://jupyter.org/)
 - Google Colab (https://colab.research.google.com)
- Audio Editing/Processing
 - Audacity (<u>https://www.audacityteam.org/</u>)
- Annotation
 - Sonic Visualiser (https://www.sonicvisualiser.org/)
- Presentation
 - Powerpoint / Google Slides
- Data Sharing
 - Dropbox / Google Drive

Images

Fig. 1: https://wra-ca.com/wp-content/uploads/2021/02/AudioMoth-photo.jpg						