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Machine Learning
Introduction

◼ Human intelligence

◼ “mental quality that consists of the abilities to learn

from experience, adapt to new situations, 

understand and handle abstract concepts, and use 

knowledge to manipulate one’s environment.” [1]

◼ Human learning

◼ “Learning is the process of acquiring new 

understanding, knowledge, behaviors, skills, 

values, attitudes, and preferences.”
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Introduction

◼ Artificial Intelligence

◼ Agent (machine)

◼ Perceive and react to environments

◼ Performs actions to achieve goals [3][4]

◼ Levels of AI

◼ Narrow/weak AI (single task, limited context)

◼ Examples: Voice assistants, self-driving cars, chat bots

◼ Artificial general intelligence (AGI)

◼ Multiple task

◼ Knowledge generalization across tasks
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Machine Learning
Introduction

◼ Machine Learning (ML)

◼ Sub-field of AI

◼ “...give computers the ability to learn without being 

explicitly programmed“ [5]

◼ Learning structures in given (un)labeled data to 

make predictions on new / unseen data

◼ Paradigm change 

◼ Before: Use domain knowledge to design (general-

purpose) features

◼ Now: Learn suitable representations (features) & 

models (classification) jointly by analyzing 

(annotated) data
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Machine Learning
Application Scenarios

◼ Computational finance (credit scoring, algorithmic trading)

◼ Computer vision (face & object recognition, motion detection)

◼ Computational biology (tumor detection, drug discovery, DNA 

sequencing)

◼ Energy (price & load forecasting)

◼ Predictive maintenance (automotive, aerospace, manufacturing)

◼ Natural language processing (sentiment classification, text search, 

translation)

◼ Machine listening (music transcription, instrument recognition, sound 

event detection, acoustic scene classification)
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Machine Learning
Unsupervised Learning

◼ Goal

◼ Find hidden structure and patterns in data

◼ No annotations available

◼ Clustering

◼ Grouping of similar data instances

Model

Clusters



22
© Jakob Abeßer, 2022 

Machine Learning
Unsupervised Learning

◼ Challenges

◼ What is the optimal number of clusters?

2 clusters

?

3 clusters
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Machine Learning
Unsupervised Learning

◼ K-means clustering

◼ Initialize K “means” randomly (=cluster centroids)
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Machine Learning
Unsupervised Learning

◼ K-means clustering

◼ K=3
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◼ K-means clustering

◼ Update: update mean by average over all assigned data points



29
© Jakob Abeßer, 2022 

Machine Learning
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◼ K-means clustering

◼ Assignment: re-assign data points to closest mean
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Machine Learning
Unsupervised Learning

◼ K-means clustering

◼ Update: re-assign data points to closest mean (repeat until 

convergence)
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Machine Learning
Supervised Learning

◼ Goal

◼ Find hidden structure and patterns in data

◼ No annotations available
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Update

e.g., images, 
audio samples
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[2]

Learning Paradigms
Supervised Learning - Classification

Fig. 1
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Learning Paradigms
Supervised Learning - Classification

◼ Predict one or multiple categorical labels from features

◼ Examples → music genre, instrument(s), key

◼ Feature space modeling (Example: 2 classes)

Fig. 3
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?

Class 1
Class 2

◼ Example: k-Nearest Neighbors

◼ Training → Store all examples

◼ Test → Assign test item to 
dominant class label of the k
clostest training data items

𝑘 = 11→ =?
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Learning Paradigms
Supervised Learning - Classification

◼ Example: k-Nearest Neighbors

◼ Training → Store all examples

◼ Test → Assign test item to 
dominant class label of the k
clostest training data items

◼ Distance measures

◼ Euclidean distance, Manhatten
distance, cosine distance, …
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Learning Paradigms
Supervised Learning

Fig. 1
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Learning Paradigms
Supervised Learning - Regression
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Learning Paradigms
Supervised Learning - Regression

Data points 
(observations)

Predictions

Regression Line

Own
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ML Project Pipeline
Data Split

◼ Training Set

◼ Model learns from this data

◼ Validation / Development Set 

◼ Used to fine-tune the model (hyper)parameters 

◼ Model occasionally sees but does not learn from this data

◼ Test set

◼ Only used once after the model training & tuning is completed

◼ Should reflect the targeted real-world use case for the model

◼ Common split ratios

◼ 80/10/10%  or even 98/1/1% (for large datasets)
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ML Project Pipeline
Data Collection & Pre-Processing

◼ Data collection

◼ Check for available data resources for given (or related) task

◼ Collect / record / annotate new data

◼ Ensure data variability

◼ Example (from acoustic condition monitoring) → include
different motor engine types & conditions, recording 
locations, microphones, …
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ML Project Pipeline
Data Collection & Pre-Processing

◼ Data collection

◼ Check for available data resources for given (or related) task

◼ Collect / record / annotate new data

◼ Ensure data variability

◼ Example (from acoustic condition monitoring) → include
different motor engine types & conditions, recording 
locations, microphones, …

◼ Data cleanup / pre-processing

◼ Remove errors, silence, empty files, …

◼ Balance dataset (proportions among class examples)

◼ Normalize (depends on the model)
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Model Selection

◼ Many models and approaches exist

◼ Types (SVM, GMM, logistic 
regression, DNNs)

◼ Hyperparameters (SVM kernel 
functions, DNN layer types)

Fig. 6
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ML Project Pipeline
Model Selection

◼ Many models and approaches exist

◼ Types (SVM, GMM, logistic 
regression, DNNs)

◼ Hyperparameters (SVM kernel 
functions, DNN layer types)

◼ Often constrained by the use-case / task

◼ Model complexity (memory, 
training time, training data 
amount)

◼ Feature pre-processing depends on model 
type

◼ Use simple models for simple tasks

Fig. 6
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ML Project Pipeline
Model Training

◼ Iterative process

◼ Typically: start with random parameter initialization

◼ Use (batches of) training data to iteratively improve model 
predictions (optimization)

◼ Learn from examples

◼ Update model parameters according to loss function
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ML Project Pipeline
Model Validation

◼ Regular model evaluation each or 
multiple training iteration
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ML Project Pipeline
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ML Project Pipeline
Model Validation

◼ Regular model evaluation each or 
multiple training iteration

◼ Helps to 

◼ optimize model 
(hyper)parameters

◼ detect overfitting on 
training data

◼ stop the training

Training Iterations

Loss

Training data

Validation data

Stop here!
Fig. 7

Own
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ML Project Pipeline
Model Testing

Fig. 8

◼ Example: Binary classification evaluation

◼ True/false positives (TP/FP)

◼ True/false negatives (TN/FN)
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ML Project Pipeline
Model Testing

Fig. 8

◼ Example: Binary classification evaluation

◼ True/false positives (TP/FP)

◼ True/false negatives (TN/FN)

◼ Metrics

◼ Precision

◼ Recall

◼ Accuracy

◼ F-score
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Audio Processing
Programming Session

Fig. 2.1
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Audio

[Audio 1] https://freesound.org/people/xserra/sounds/196765/ 

[Audio 2] https://freesound.org/people/IliasFlou/sounds/498058/ (~0:00 – 0:05)
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